T-Cell Promiscuity in Autoimmune Diabetes

نویسندگان

  • Li Li
  • Bo Wang
  • Jeffrey A. Frelinger
  • Roland Tisch
چکیده

OBJECTIVE It is well established that the primary mediators of beta-cell destruction in type 1 diabetes are T-cells. Nevertheless, the molecular basis for recognition of beta-cell-specific epitopes by pathogenic T-cells remains ill defined; we seek to further explore this issue. RESEARCH DESIGN AND METHODS To determine the properties of beta-cell-specific T-cell receptors (TCRs), we characterized the fine specificity, functional and relative binding avidity/affinity, and diabetogenicity of a panel of GAD65-specific CD4(+) T-cell clones established from unimmunized 4- and 14-week-old NOD female mice. RESULTS The majority of GAD65-specific CD4(+) T-cells isolated from 4- and 14-week-old NOD female mice were specific for peptides spanning amino acids 217-236 (p217) and 290-309 (p290). Surprisingly, 31% of the T-cell clones prepared from 14-week-old but not younger NOD mice were stimulated with both p217 and p290. These promiscuous T-cell clones recognized the two epitopes when naturally processed and presented, and this dual specificity was mediated by a single TCR. Furthermore, promiscuous T-cell clones demonstrated increased functional avidity and relative TCR binding affinity, which correlated with enhanced islet infiltration on adoptive transfer compared with that of monospecific T-cell clones. CONCLUSIONS These results indicate that promiscuous recognition contributes to the development of GAD65-specific CD4(+) T-cell clones in NOD mice. Furthermore, these findings suggest that T-cell promiscuity reflects a novel form of T-cell avidity maturation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β cell antigen recognition by CD4 T cells T cell promiscuity in autoimmune diabetes

Abbreviations: CAT, chloroform acetyltransferase; CDR, complementary determining region; EAE, experimental autoimmune encephalomyelitis; GAD65, glutamic acid decarboxylase 65; HEL, hen egg lysozyme; MBP, myelin basic protein; MLN, mesenteric lymph node; NOD, nonobese diabetic; PLN, pancreatic lymph node; scTCR, single-chain TCR; sIA-Ig, soluble IA-Ig; SPR, surface plasmon resonance; TCR, T cell...

متن کامل

T-cell Tolerance Following Bacterial Glutamic Acid Decarboxylase (GAD) Feeding in Streptozotocin-induced Diabetes

Background: Autoimmune type 1 diabetes mellitus is caused by T-cell mediated immune destruction of the insulin-producing β-cell in pancreatic islets of Langerhans. Specificity of the auto-antibodies and of the auto-reactive T-cells has been investigated, in which several auto-antigens were proposed. Objective: To determine whether glutamic acid decarboxylase (GAD) feeding would induce oral tol...

متن کامل

Compensatory mechanisms allow undersized anchor-deficient class I MHC ligands to mediate pathogenic autoreactive T cell responses.

Self-reactive T cells must escape thymic negative selection to mediate pathogenic autoimmunity. In the NOD mouse model of autoimmune diabetes, several β cell-cytotoxic CD8 T cell populations are known, with the most aggressive of these represented by AI4, a T cell clone with promiscuous Ag-recognition characteristics. We identified a long-elusive β cell-specific ligand for AI4 as an unusually s...

متن کامل

Altered Suppressor Function of Regulatory T Cells in Type 1 Diabetes

Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...

متن کامل

Requirement for both H-2Db and H-2Kd for the induction of diabetes by the promiscuous CD8+ T cell clonotype AI4.

The NOD mouse is a model for autoimmune type 1 diabetes in humans. CD8(+) T cells are essential for the destruction of the insulin-producing pancreatic beta cells characterizing this disease. AI4 is a pathogenic CD8(+) T cell clone, isolated from the islets of a 5-wk-old female NOD mouse, which is capable of mediating overt diabetes in the absence of CD4(+) T cell help. Recent studies using MHC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008